OSI UK User Group Newsletter

Vol.1 No.1 December 1979

A beginning

just what you always wanted for Christmas: an OSI User Group to go with your
Chalienger computer! And while we will be reviewing games software and similar
lightweight matter, our real purpose for starting the User Group and this News-
letter is to share practical information on the use and uses of OSI small computers.
OSV’s hardware is superb, but their documentation ranges from the mediocre to
simply appalling, particularly at the machine code level. We know that the BASIC
is fast (and we'll discuss ways of making it still faster), but neither OSI nor Microsoft

supply any information on how BASIC works, how it stores information, or the "
start addresses of even the more important routines such the screen and 1/0O°

handlers. We're already making a start in the Newsletter by serialising the notes
on OSI’s BASIC-in-ROM collected by the American Challenger software specialists
Aardvark, but that is only a start — the rest is up to us as a group of users, and that,
we imagine, includes you. (Minor problem, by the way: Microsoft don’t like
people publishing their machine code, since they don’t want people pirating their
hard work; but we can certainly publish lists of entry points to subroutines, since it
is the code itself which is copyright.)

Our othermain reason for being is to act as a forum for exchange of software,
hardware and application notes and ideas, both directly through the User Group
and rather less directly, but rather more publicly, through this Newsletter. We
all use Challenger 2s, so the contents of this Newsletter apply mostly to those
machines; but our aim is to cover the whole range of the OSI small systems, and
also related systems like Comp’s UK101. We all have our applications for our
machines too: the Editor uses his as the central processor for an offline terminal
to a typesetter in his design business (the reason why this Newsletter can be type-
set!), and another colleague uses a C2 as the controller for an experimental sound
system. How do you use your machine? Let us know. We want to look in detail at
one application eac¢h issue; and the way in which you use your machine may well
solve an application puzzle for someone else.

The same applies to software and hardware. OSI give no real information on
how to connect their small systems to anything non-standard, while the computers
themselves, with everything easily accessible, are ideal for that kind of work. And
software. . .software is what the whole thing depends on. Let us know what you
are doing! By the time this issue gets out ‘onto the streets’ the Editor’s experimental
typesetting terminal should be up-and-running — which will allow us to typeset
BASIC program and assembly-language listings direct from Challenger- or KIM-
format tape. (We’ll also offer this as a low-cost service for people interested in
selling software for OSI systems, both to encourage software houses to draft their
software in an ‘OSl-compatible form, and to encourage them to produce decent
documentation while they’re at it!)

228 «839

The Group and Newsletter arose originally from suggestions made by Mutek, at
Box, and their help is reflected often in the contents of this issue. But we, and they,
are keen that this venture should not be dependent on any dealer —we want every
dealer to be involved. So dealers — both hardware and software — let us know
who and where you are, and what services you offer. In addition to a ‘Dealers’
Notes’ section (free! — we want to know about you), we’ll also be making advert-
ising space available — let us know soon if you're interested.

OSl UK User Group

Organisers:

George Chkiantz and Richard Elen: 12 Bennerley Road, London SW11 6DS.
(Newsletter subscriptions, technical queries, general discussion and other usual
User Group matters)

G.E. Davies: 5 Houndelee Place, Newcastle-upon-Tyne NE5 8AJ.
E. Turnbull: 12 Cheyne Road, Prudoe, Northumberland NE42 6PF.
(Northern area contacts)

Newsletter

Tom Graves: 19a West End, Street, Somerset BA16 0LQ.

(Editorial matters, contributions, advertising and anything to do with the Newsletter
other than subscriptions)

Prices, pirating and all that

Early in 79 | was looking around for a simple but versatile microcomputer to use as
the controller for a typesetter terminal. The old PET with its unusable keyboard was
out; likewise the TRS-80 with its awful lower-case characters and keyboard bounce.
I’d thought of a Nascom-2, but nasty experience with a Nascom-1 that insisted on
altering code by itself on Reset had made me rather wary — and anyway, as
expected, the Nascom-2 didn’t actually materialise until months after its ‘launch’
date. So an ad for OSI kit rather caught my eye — for awhile. The spec for the C2was
right — just right — but the price. . .!

The disc version of the C2 was quoted at £1595. The basic 4K version was £620.
Excluding VAT. While the new 16K PET (much improved, but still — for my purposes
— useless), with a reasonable keyboard and built-in VDU was a mere £675. Forget
[} AP

Until a friend told me about the computer he was using in his experimental sound
system. A 4K C2-4P, he said. Very fast BASIC. Very adaptable, easily interfaced to his
other kit. And very good value at £349, too.

£349? £620? Something very wrong here! Or something very right; or both.

| bought my C2-4P from Mutek at the above-mentioned £349, plus a further few
pounds for a further 4K, plus the dreaded 15%. And | wondered how one dealer
could quote a price of almost 60% of that of the ‘official’ dealers, and yet still give
good service and make a living too.

c

¢ (

But the answer is not quite as obvious as it might at first appear. Rip-off there
almost certainly was, but it seems to have been more on the other side of the
Atlantic than here. The British official dealers, of whom Mutek was once one, had
been placed in aludicrous position by OSI. If they wanted to be official dealers, they
had to buy their systems (or rather hand over their money and wait. . .and wait)
from the company whom OSI had contracted as their European distributors. This
was, and still is, American Data Home and Office Computing (Adhoc for short). And
Adhoc’s wholesale price for OSI kit for those privileged British official dealers
turned out to be identical to the American retail price for the same OSI kit (then
$598 for the 4K C2-4P). Before shipment costs. Before Customs duty. Before adding a
realistic amount for sales, for technical back-up and just plain living. Nowonder the
prices were high!

Let us simply say that, apart from the occasional Superboard, no dealer in this
country buys OSI kit through Adhoc. (This also means that, except on those
Superboards, no oneis really entitled to call themselves an ‘official OSI distributor’.)
Everyone buys direct from American national wholesalers, who have the kit in stock
and who give realistic dealer discounts. And while prices still vary, they are now far
more realistic and competitive. Mutek may still be the cheapest, but most of the
others are not far behind: Microcomputer Business Machines (afederation of some
of the other former ‘official’ dealers, headed by Mark Strathern of Lotus Sound)
offer the 4K C2-4P for £404 at present. We may still make asides about excessive
profits in certain cases — the occasional ‘get-rich-quick’ dealer — butin general OSI
kit is now being sold at the right sort of price. For anything other than absolutely
standard off-the-shelf applications, OSI small computers are now better value than
the equivalent PET, for example.)

Where the PET and the other ‘big-seller’ machines still have the advantage is in
packaged software (but then, in the case of the PET at least, they’re not too brilliant
for anything else. . .). And it is here that our other problem with prices and the like
arises. Even experienced programmers need packaged utilities like assemblers and a
decent monitor, and most of us like to play the odd idiot game once in a while at
least. But where do we get them from? OSl’s software — if you can get it from
anyone — is cheap-ish but definitely ‘curate’s egg’. Aardvark — as far as | know the
only other producer of packaged OSI-compatible software — produces tapes which
could be called ‘bishop’s egg’: generally excellent but occasional howlers! And
again, the prices vary: Aardvark’s American prices are $5.95, and while at least one
British dealer sold those tapes at the usual — and excessive — dollars-equals-
pounds conversion, Mutek sold theirs at a typical £2.60.

The gap is enormous, but Mutek’s reasoning is simple: first, software is the ‘drip-
feed’, and at their prices (which they make enough on if they sell in good quantity)
most people will buy at least one or two on a visit; second, they regard reasonably
priced software as part of the technical back-up for their systems (with good
packaged software you can prove in many cases that apparent hardware problems
are in fact complex programming errors by the user); and third, they feel that their
prices are what the software is worth, and that selling the tapes for what they are
worth is the best protection against pirating.

Pirating is something which worries every dealer in software (it worries the record
companies too, for the same reason — they lose a lot of money on it). Like the record
companies, software houses go to a great deal of trouble to protect their productin
every way they can — which is probably the main reason why OSI’s documentation

of its machine-code is almost non-existent. But we have a problem where the record
companies don’t — namely, that there is almost no way to distinguish between a
legitimate back-up copy, a mildly but still expensively illicit ‘copy | did for Pete in
Manchester’, and the real illegal bulk copying of software. And for every
programming master who invents a trick to stop you seeing his (or her) listing — and
probably prevents you from taking that all-important back-up copy — there will be
another programming master to work out a way of getting round it. Stalemate.

It seems to me that whole problem comes down to two areas: amateur versus
professional attitudes, and respect.

There are so many erstwhile amateurs now working as professionals in the
personal computing field that the distinction may seem odd; but the attitudes
usually remain the same. The professionalisin it for aliving: that comes first, and any
interest in what is being done for that living comes a definite second. Thus, as far as
pirating of software and the like is concerned, the attitude is one of ‘protect at any
cost’ — assuming the opposition can be made to pay the legal fees. The amateurisin
it, literally, for the love of it; that comes first, and the fact of making aliving out of it,
while a real necessity, still comes second. Copying tapes is a matter of friendly
exchange, of keeping in touch, of sharing — doing it for the love it — without
actually noticing that those copies are hurting the original producers financially.
Briefly, an over-professional attitude can — and does — develop into an arrogant
state of ‘get-rich-quick and damn the consumers’; an over-amateur attitude leads to
bankruptcy for someone. A matter of respect all round, | think: it’s certainly about
time that some dealers at least realised that they’re dealing with people, not with
walking credit-cards; and amateurs, too, should think of what it really costs before
making ‘that copy for Pete’.

And if you were about to copy a tape for Pete, stop for a moment. Some of the
programs you’ve developed are probably marketable: even if you might not think
so, other people — the potential users — may well do. One dealer commented to
me that a customer mentioned in passing that he’d developed a couple of games
and quizzes, butdidn’t think they were particularly brilliant; but’ve seen them, and
I'm glad to say that his ‘British Towns Quiz’ will be on the market soon, for his
handling of the map certainly was brilliant. The American software is generally
mediocre — let’s get some together to sell over there! Anyone interested in selling
software they’ve developed for OSI small systems might like to getin touch with the
User’s Group — we’ve already arranged a provisional marketing deal with Mutek,
and other dealers will, we hope, follow suit. Let’s hear from you; let’s see what
you’ve been working on, and what your opinions are on the problems of prices,

pirating and all that. Tom Graves

Very useful BASIC routines

00BC

Works its way through a line of BASIC (or whatever C3, C4 points to) and gets the.,

next character each time it is called. It will be pointing to the end of your USR state-
ment if you call it from the USR; you can then use it to get stuff after X=USR(Y) —
and BASIC will never be the wiser! BC leaves carry set if character is numeric.

v C

v C

C

‘{’) rC

00C2

Entry to the BC routine without incrementing C3, C4 before getting the character.
Thus it gets the current character.

A477 ASca

Call this routine and then jump to A€52 and you'll be RUNnRing the current BASIC
program — starting from machine language!

A925

Call this from a USR statement and you will be doing an INPUT statement — but
BASIC will not echq thg characters you type in, including the carriage return/line
feed at the end. '_fhls gives a real BASIC INPUT statement that screw up your nice
graphics by scrolhpg the screen one line! You must set loc 64 to $80 (setthe CTRLO
flag) befo_re all this works. Do an LSR $64 to clear the flag to normal if you want
BASIC print statements to work again.

AAAD

One yog’ye been waiting for. This gets a 16-bit argument from the current BASIC
line position (yes, like right after the ‘)" of your USR statement!), evaluating what-
ever expressions it finds, and leaves it where a call to AE05 will find it and putitin
AE, AF! (Use ACO1 to find a comma and then call AAAD again to getanother value!)
AAC1

Like AAAD but no type mismatch check.

ABF5-ACOC

This series of routines (actually of entry points to one routine) uses the BC routine
to ch_eck for various delimiters. If you disassemble the ROM here, it demonstrates a
classic use of the 2C opcode as a combination NOP and immediate load, depend-
ing on where you jump in. ABFB checks for ‘)’; ABFE for ‘(’; ACO1 for “,’; ACO3 for
whatever character you leave in A when you call it. ABF5 checks for ‘", calls AAC1
to get a va_lue, t'hen checks for ‘). (Thoughts of a BASIC statement X=USR(Y)(Z)
should be jumping into your head about now.)
ADOB

This routine uses the BC routine to find the name of the variable that’s next in the
BASIC hpe, and puts the address of the variable in locs 95, 96. It also leaves the
address in A, Y. If you store A in 97 and Y in 98, you can call OUTVAR (AFC1) to
store whatever 16-bit value you put in A and Y into that BASIC variable.

B3AE

This is like AACT, but gives an error if the value is greater than 255,,. (Used by the
POKE routine to keep you from putting a too-big number in memory.)

B962

Prints the decimal value of whatever 16-bit number is in AD, AE at the current

cursor !oc.atio'n on the screen, with normal BASIC checks for line length (does auto
CR/LF if line is too long) etc.

(Courtesy of Aardvark Technical Services)

Memory locations containing items of interest

These notes were supplied by Aardvark Technical Services (in the States) via
Mutek, and, to quote, “do not claim to be complete or even error-free”. Even so,
they and the list of BASIC-in-ROM subroutine addresses from the same source do
give us a very good start. Let us know of any routines you discover, so that we can

make them available to other OSI users.

0008B,C
000D

000E
000F
0010

0013-5A
005F

0061
0064

0065
0079,7A

0078,7C
007D,7E
007F,80
0081,82
0085,86

0087,88
0089,8A

008F,90
0095,96

0097,98

00AA,AB

Address of USR routine
Number of extra nulls to be

inserted after carriage return.

Number of characters since
last carriage return.
Terminal width (for auto
CR/LF).

Terminal width for comma-
spaced columns.

Input buffer.

String variable being
processed flag (?)

?

CTRL O flag (bit 7 set = sup-
press printing).

sometimes contains $68 (??)
Pointer to initial null of BASIC
program workspace.

Pointer to beginning of
BASIC variable storage space.
Pointer to beginning of
BASIC array storage space.
Pointer to end of array space/
beginning of free memory.
Pointer to end of string
space/top of free memory.
Pointer to top of memory
allowed to be used by BASIC.
Current line number.
Sometimes next line
number (?)

DATA pointer.

This is where ADOB leaves
address of the variable it
found.

Address of variable to be
assigned value by OUTVAR
(AFC1).

Points to pointer of next
BASIC line after LIST.

00AD,AE
00AE,AF

00D1-D7

00EO0-E6
00E8-FF

00FB
00FC

OOFE,FF
0130
01C0
0200
0201
0202
0203
0205
0206

0207-0E

0212

0213-16

The contents of this pair is
printed in decimal by B962.
This is where INVAR (AE05)
leaves its argument.
Clobbered by OSI’s Extended
Monitor disassembler; kills
BASIC.

Apparently unused page zero
space.

Apparently unused (by
BASIC) page zero space.
ROM monitor load flag.
ROM monitor contents of
current memory location.
Address of current ROM
monitor memory location.
NMI routine.

IRQ routine (can be over-
written by stack being used
by BASIC.

Current screen cursor is at
D700 + (0200); initialised to
(FFEO).

Save character to be printed.
Temporary storage used by
CRT driver (BF2D).

LOAD flag ($80 = LOAD
from tape).

SAVE flag (0 = not SAVE
mode).

Time delay for slowing down
CRT driver.

Variable execution block —
code for screen scroll — not
re-usable, but stored at BFF3-
BFFA.

CTRL C flag (not 0 = ignore
CTRL C) (reset by RUN).
Polled keyboard temporary
storage and counter.

A000-37

A038-65

A477

BASIC initial word jump table
(in token order; add 1to each
address).

BASIC non-initial word jumps
(real entry addresses).

T ———y—r

A084-163 BASIC keywords in ASCII;

A164-86

BE4E

bit 7 set as delimiter; in token
order.

Error messages with null as
delimiter (printed by A8C3).
“Written by” message.

Miscellaneous ROM BASIC routines

Warmstart (4C 74 A2)
Message printer (4C C3 A8).
General purpose JMP instruc-
tion: put target address in
A2, A3.

Get next character in BASIC
line.

Get current character in
BASIC line.

Look back through stack (2?).
Check for OM and stack
overflow.

‘OM’ error.

Error caller; sets X-register to
error code.

Warmstart entry.

Input and fill buffer; put null
at end.

Input from FFEB.

Toggle CTRL-O flag.

Find BASIC line whose
number is in 11, 12; put
address of pointer of that line
in AA, AB.

Point C3, C4 to 0301; reset
string and array pointers;
reset stack to (01)FC; put 0301
8F, 90; 0 in 8C; 0in 61; 68 in
C5 (2).

Clear stack; 0 in 8C and 61.
Top of main BASIC execution
loop.

Entry to BASIC execute loop.
Do line of BASIC.

Jump to FFF1 to check for
CTRL C.

CTRL C entry point.

Set null count at DO (?).

A77F
A866
A86C
A8C3

A8EO
AB8E3
ABES5
A925

A946
AAAD

AACT
ABAO
ABDS8
ABF5
ABFB
ABFE
ACO1
ACO03

ACOC

Get decimal number from
buffer; put value in 11, 12.
Put null at end of buffer;
CR/LF; nulls.

CR/LF with nulls from 0D.
Message printer: A, Y
registers point to message,
which ends with null.
Output ”

Output "2”.

Output character in A regis-
ter; update OE; check line
length.

Input routine less

clear CTRL O.

Output "2 ”; jump to A357.
Get 16-bit argument from
BASIC line; AE05 will put
value in AE, AF; does type-
mismatch error check.

Like AAAD but with no TM
error check.

Put 0 in 5F; get character; go
to B887 if numeric??

16-bit complement using
AE05/AFCT1?

Checks for ”(”, calls AACT,
checks for ”)”.

Syntax error if next character
not ”)".

Syntax error if next character
not ”(”.

Syntax error if next character
not ",”.

Syntax error if next character
not what’s in A register.

SN error printer.

e g e

ADOB Get variable name from B3F3 (BA, BB) to C3, C4.
BASIC line; put address of B4DO0 Arithmetic to normalize
variable in 95, 96 and A, Y. floating-point argument??
AD53 Expects variable name in 93, B887 Check for +,-, %, , ., E,
94; finds address of variable etcetera... long!
and putsitin 95,96 and A,Y; B95A Prints current line number.
0in 61. B962 Prints contents of AD, AE as
AE05 INVAR: puts 15-bit signed decimal number.
value in AE, AF. BD11 Coldstart entry point.
AE85 BS error. BEE4 UART input routine (51883
AE88 Function call error. chip at FBOX).
AFC1 OUTVAR: 0in 5F; contentsof BEF3 UART output routine.
A register in AE; of Y register BEFE UART initialisation.
in AF; then to 22 BF0O7 ACIA input (6850 chip at
BOAE Part of message printer FCOX — like C2-4P).
(A8C3); calculates length of BF15 ACIA output routine.
message? BF22 ACIA initialisation.
B3AE Put 8-bit argument from line BF2D CRT driver.
in AE, AF.

Courtesy of Aardvark Technical Services

Disentangling USR

The description of the USR function in the ROM BASIC ‘manual’ supplied with
C2-4Ps is a classic example of OSI’s sludgeware. The description given on its pages
13 and 14 is essentially correct (although quite indecipherable) except for one
glaring error. Despite what it says, don’t POKE the low-and-high addresses of the
start of your machine-code routine into 23E and 23F — it doesn’t work. (Does
anyone know what they do do? The addresses are given in the ‘manual’ in hex
rather than decimal, which implies a machine-code rather than BASIC use for a
start.) The locations that do work are 11, and 12, (Z-0B and 0C), as mentioned in
the note on machine-code screen clear in the Graphics handbook.

In practice there appear to be two separate USR functions: X=USR(X) and
P=USR(Q). X=USR(X) is a simple in-and-out call to a machine-code subroutine
that carries no value from or to BASIC — a typical example being a screen-clear.
P=USR(Q) is more tricky but more useful. As described in the manual, two routines
embedded in the BASIC ROMs will pick up a value from Q and return it after
processing to P, so that P does equal USR(Q). The two routines are INVAR (AE05)
and OUTVAR (AFCT). AEO5 processes the expression within Q’s brackets (‘Q’ may
be a full expression rather than a mere variable label) and places it as a fifteen-bit
signed integer into zero-page AE and AF, the lower eight bits being in AF. To return
the processed value to BASIC, AFCT is called: the A register contains the high order
of the value, or else must be zeroed, and the low order is contained by the Y
register; the combination is then loaded, as a fifteen-bit integer again, into the
storage space for the BASIC variable P (or whatever precedes the = sign in the USR
statement). The comment in the manual that ‘if this function is not called USR(X)
will equal X’ does not mean that P will contain the value of the X register; in prac-

€€

tei

tice it is either unchanged, equals the value of X (or Q, or whatever) prior to the
USR statement, or is loaded with garbage.

The comment that ‘the routine pointed to by 6 and 7’ (and later, 8 and 9) ‘should
be called’ is a reference to the fact that the cold-start routine loads these addresses
with 05,AE and C1,AF respectively. But there is no ‘JSR-indirect’ in 6502 code, and
the use of a JSR to a JMP-indirect (the 6C opcode), while often used in BASIC
because of the fixed nature of the ROM, is relatively inefficient (both in memory
use and in programming complexity) compared to a simple JSR call. It's simpler to
ignore these zero-page addresses!

Note that the specific form X=USR(X) appears to be a kind of reserved word: I've
tried using it in the same way as for P=USR(Q), calling OUTVAR, and the result
is a complicated garbage that | haven’t yet disentangled. X=USR(Q) is fine, though,
as are P=USR(X) and Q=USR(Q). | did my tests on thesc "1sing an ASL A (0A opcode)
to double the value supplied by (), and seeing what came out at the other end.

According to OSI only one value can be transferred to and from BASIC with a
single USR call, but there are ways round this. In their notes which we are serialising
in this newsletter, Aardvark point out that ROM BASIC subroutines can be used
to transfer a limited array from BASIC to machine-code, via a statement of a form
such as P=USR(Q)(R)(S)... or P=USR(Q),RS..., and BASIC variables can be
assigned values directly from machine code. Details are given in the section headed
‘Very useful BASIC routines” elsewhere in this issue.

The tedious part of programming with USR is the string of POKEs needed to give
the start of a string of machine-code routines. Calling the USR function without
a preliminary POKE generates an FC (function call) error message and program
crash. This is because the cold-start routine places the start-address of the FC
routine (AE88) into 11,,12,,, which is used in default of further instructions.
Perhaps the simplest way of organising the POKEs would be to lay each USR routine
call as a series of BASIC subroutines, to be called by ON X GOSUB, where X is
assigned its value either by BASIC or (by OUTVAR, AFCT) in machine-code.

Tom Graves

Software — some research needed

Stack requirements of ROM subroutines

USR calls from BASIC are only allowed 16 stack levels. At first glance this appears
to be little limitation: eight nested levels of subroutines is a lot. But those code-
saving ROM routines are often greedy on stack use, partly for internal subroutine
calls, partly for PUSH instructions for protecting registers. FEED (or FD00 — same
thing), the keyboard input, uses seven stack levels including the call to the routine,
and A8C3, the message printer, appears to use nine. So beware!

What we really neeg is a complete list of the stack requirements of subroutines —
and, if possible, a complete list of the overall effects that the routines have on the
registers and on obvious ‘parking space’ such as the zero page and the first part of
page 02. I've already made a start on the monitor of the C2-4P and the display end
of its ROM BASIC (which is also used for C1/Superboards and, to a large extent,
UK101s), if anyone needs that info now. If you're playing around with a dis-
assembler, note these things down and send them to us, so that we can publish a
complete list as soon as possible.

. /

Applications software, anyone?
In future issues we want to be looking in detail at not-so-off-the-shelf applications
of OSI kit, which includes the software developed as part of those applications.
Some of it gives useful spin-off for other possible applications: Richard Elen and
George Chkiantz have some nice real-time bar-graph programs used in testing
their experimental sound system, for example. Graeme Davies has the foundations
of a distributed processing system. My main project is a modular text processing
and formatting system to allow flexible input, code-conversion, editing, formatting
and page-make-up of text for phototypesetters (initially A-M’s Comp/Set® series,
but later other types as well); the immediate spin-off from this project is a mixed
BASIC and machine-code screen-editor, which could be used for a number of
other applications.

So: please let us have detailed listings of your applications programs, for public-
ation in this Newsletter? Or are there any takers for a software exchange?

Games Software — some reviews

The games under review all originated from Aardvark Technical Services in the
States. Aardvark are the biggest(?) software house for Challenger software over
there, and several UK dealers stock their tapes. My copies were supplied by Mutek,
whose prices are quoted here; but prices do vary from dealer to dealer, so check
first before sending your money!

| approached these reviews with two specific points in mind: Christmas, and the
not-too-distant event of my kids’ school fétes. | therefore looked for speed, sus-
tained interest, flexibility and, above all, crashproof programming for use by very
inexperienced users!

In each case the programs come with a complete listing in BASIC, and while in
only one out of the four cases would alteration be essential (Slashball — see later),
all of them could do with joystick operation (which some of the programs offer
as an option, but which I don’t happen to have in hardware) and sound and colour
if available. My only general gripe is that the instructions displayed for the games
are all in upper-case only — | know that <SHIFT-LOCK>> has to be locked down
for BASIC operation, but upper-case is often almost illegible, especially on an
unmodified TV. It’s not that hard to move that shift-key, is it? Anyway, on with the
reviews.

Fighter Pilot

Best described as a ‘standard’ arcade-type game — you shoot down targets
(planes?) by steering your craft so that they fali in line with your sights. But every-
thing seemed a little vague: the sights, as displayed on the screen, were large and,
surprisingly, weren’t particularly accurate, for example. You missed the target if
it was in the upper portion of the sights, but you did hit it if it was just outside the
lower part of the sights. Sometimes the target was still left for some time after you’d
‘killed’ it, too! Some kind of moving background would have helped the feel of the
game, but this would probably best be done in a machine-code subroutine for
speed.

' C

C

There are a number of ‘levels of difficuity” in this game, but these consist simply
of more or less time in which to ‘kill’ ten targets, which move at randomto a greater
or lesser degree. There is also an ‘automatic fire’ option which hits the targets for
you when they go into the sights area, and which takes much of the fun out of the
game! A good idea, though, if the ‘kill’ graphics were tidied up a little.

Despite my criticisms, my nine-year-old son liked it the best of the four.

Slashball

We liked this one a lot, despite its serious bug which crastied the program in the
middle of several really good games. Infuriating, that! The game was simple, too:
the aim was to bounce a ‘ball’ onto a central target by placing angled barriers or
‘slashes’ in its path. The catch is that the slashes remain there for the duration of
the game once you put them up, and you lose a point each time, too (it’s a two-
player game). The ball also bounces in different directions according to which way
it comes up to it, so we often found ourselves putting up just one wrong slash and
then spending several more careful slashes to get back towards the target. Tricky,
but fun, especially if you’'re watching your opponent get into a mess!

The ‘levels of difficulty’ are again to do with time: if you take too long, the
game ends, awarding your opponent an extra twenty-five points as it does so. As
games are usually close, this is too much — ten extra would make it a better and
fairer finish.

The bug is infuriating, since it wrecks about one in three games; and it is also a
serious one, as it crashes BASIC as well as the game. But it should be easy enough
to patch, and | hope the word gets back to Aardvark soon. The problem arises
from the displayed limits of the board and the way in which the ball is served. The
ball always bounces off the edge of the board; the ball is served, at the start of each
round, from the baseline of the screen, which can be on or outside the limits of the
board. If this happens, the ball is trapped outside the board area rather than within
it, and is soon bounced into the memory area above the screen memory — into
several of BASIC’s flags, including those for the keyboard and screen. The result
is a POKEd wide layout for the screen and a locked-out keyboard, calling for a
reset and warm-start to BASIC (the program, fortunately, is usually still intact). The
solution would be to tighten the limits for the serve so that it can only start within
the board area — which should have been done in the first place, but never mind.

Apart from the bug, a very good game — definitely one for the school féte.

Killerbot
I once played a Z-80 machine-code version of this on a Nascom, but if anything
this one is faster, even though it’s in BASIC! it’s an old classic: you have to cross ‘a
courtyard full of charged guard posts and killer robots’. Run into any of these, or
if they run into you, and you lose — ‘electrocuted’, presumably. Up to ten robots
appear from random places round the board or courtyard at the start (your choice)
and chase your rather small blip at either half speed (‘Regular’) or the same speed
as you (‘Masters’). A winning run at the ‘regular’ level usually consists of a high
speed sprint with tactical stops to let the robots blow themselves up on the guard
posts in their haste to get you. ‘Masters’ is much trickier — you don’t have time for
tactical stops! And when what you thought was the last robot has blown itself up,
leaving a nice clear run, another one appears afresh at the edge of the board —
you're always running from at least one. '

I could beat ten robots at the ‘regulars’ level quite quickly, but the ‘masters’ level

AL S~

is another game again — beating five robots is my best so far, and I’'m having
trouble doing that well again! Definitely a winner in my family — the only
complaint was a demand for a punchball to relieve the built-up tension — and
certainly a money-spinner for the school féte. Recommended.

Ten Tank Blitz

Not really for the school féte, this one: more for Christmas, as a good game could
go on for half an hour or more. The instructions say ‘you won’t learn this game in
five minutes’, which is true (and the typing errors didn’t help!); but the complexity
is much of the fun. Each player has two sets of controls: one to select one of his/her
five tanks, the other to move or fire with the selected tank. Targets can take several
hits before being killed, and these values can be easily changed at the program
level; the only displayed variable is one which selects the density of trees on the
board, This last gives a surprising flexibility to the game, which can range from an
open and rapid slam-it-all-out, through variants on skulking through the forest,
to a really tricky maze game in which you have to burn your way through a mass
of trees without blasting your own tanks and base to pieces in the process. One
particularly nice touch is that the missiles each tank launches can be steered: turn
the tank after firing a missile, and the missile turns too. (Allows you to fire at others
while skulking behind trees — quite apart from encouraging nasty habits, it can
also get you ‘hoist by your own petard’.)

It’s a very clever game with a lot of neat touches which you only learn as you play
it. It only just fits into 4K, so there’s little room for alteration on a 4K machine. But
one thing | would like to change is the ‘win’ conditions: as supplied, you win only
by blasting away at your opponent’s ‘block-house’” until it decides to disappear
(after seven hits or so). But in some ways this is too easy: you park a tank in front of
it and, while your opponent is desperately pressing keys to find which one of his
remaining tanks is close enough to knock yours off, you can easily rattle off the
baker’s half-dozen shots needed. Limited ammunition, replenished by returns to
base in Star Trek fashion, would make the game more realistic and, for me, more
enjoyable.

Again, definitely recommended. But be warned; a client came to visit me on a
recent weekend and, forgetting about his business, played this game for several
hours instead! It’s as addictive as any version of Star Trek that I've seen, and with
far more room for maneouvre both in the game and its display, and in its options
for programming ‘extras’. Tom Graves
Prices as given by Mutek, Quarry Hill, Box, Wilts:

Slashball: £2.15
Fighter Pilot: £2.60
Killerbot: £2.60

Ten Tank Blitz: £4.35

(‘*)

D

C

¢

Hardware mods

This issue’s hardware mods were suggested by Richard Elen. All are for C2-4Ps.

2MHz operation

On Mod 3 versions of the C2-4P the system clock is derived from the 540 video
board’s oscillator, and is sent to the 502 CPU board on pin 18 of the bus. The oscil-
lator drives a 74163 (labelled U5D — see sheet 3, top left, of 540 schematics) which
puts out approximately TMHz from its pin 13 (QB). Twice this frequency is available
from pin 14 (QA) on the same chip. To change to approximately 2MHz operation,
cut the track next to pin 13 of U5D, and jumper to pin 14 instead.

Everything then runs twice as fast as before. But note that while this means that
BASIC calculations and operations run twice as fast, so does the keyboard and, in
particular, its auto-repeat — it will start its auto-repeat cycle twice as quickly, giving
an apparent keyboard bounce if you aren’t careful. The clock rate for the cassette
interface is supplied by a separate 555 timer chip, and will remain at 300 baud
(assuming it hasn’t been modified) — so you don’t need to worry about your
existing tapes becoming incompatible!

The CPU should be up to 2MHz operation, but your memory may not be, since
some of the 2114s supplied by OSI are only 550nS rather than 450nS. A memory test
is essential to identify chips with any problems — a simple test in BASIC, loading
and checking with alternate 1s and 0s, is given here.

10 FOR X=900 TO 8192 (or whatever your total memory is)
20 POKE X, 85 (07010101,)

30 |IF PEEK(X)<<>>85 THEN PRINT X;

40 POKE X, 170 (10101010,)

50. IF PEEK(X)<<>170 THEN PRINT X;

60 NEXT X

The program was supplied by Graeme Davies and takes about 20 seconds per K of
memory to be tested. A BASIC program (in principle, at least) can only test memory
above itself — a machine-code routine would be needed to test memory below
900,, in this case, or else a certain amount of chip-swapping to bring every chip
in turn within the scope of the BASIC program.

Internal amp option (for Mod 3 versions of C2-4P only)

The Mod 3 versions of the C2-4P have three additional sockets compared to earlier
versions. Two of these are for sound and digital-to-analogue signal outputs. Since
these are compatible with standard amplifiers, several people have commented
that an Apple-style internal amp would make the sound side of the system more
compact. Richard Elen’s diagram below should be largely self explanatory — it uses
an amp board from Henry’s Radio (about £2.70) which outputs about .5W at5V. We
had a very similar design from Graeme Davies, using an Al 20 from Bi-Pak (about
£4.00) connected to the 12V supply across the smoothing capacitor. In Richard’s
example the amp is wired directly to the sound output socket from the inside, while
Graeme suggested that it would be better to have a lead coming out through the
back panel with a phono plug to be inserted into either sound or D/A socket.

JONS)
S"“sc‘:{:“. “M/Dv‘ cﬂ,\rﬁt‘(i
]
S
O O Sound
o/ »
o0
- {f ~
poted U
| e
b UNDERS D€

mPu BSPRO

i

R= 21710k
C = 1¢¢HF 416v
VR = 25@ KN Log wth Saith

Hevma‘; G/'\(M C£.1“7¢)

Bt TRA 2P Bom®
f e,
| bask
ed shitkypuds ZON
(38 Bans)

Remote switching option

This uses a 15005 DIL relay driven from the RTS (Ready To Send) line from the
ACIA (pin 5 of the 6850 chip) on the 502 or 600 board (Superboard). The addresses
for the ACIA on the boards are FC00 and F000 respectively. The version for the C2’s
502 board is shown here. Note that in most versions of the C2 the RTS line is active

low, and will need to be inverted — hence the connection to a spare circuit of U14
between the ACIA and relay.

N 6859 I3
. flA Lowl qrs o1
m{% - fefwe

LA RRTY]

J (Olu\

13 98
)
15095 DiL Relay 1500
(TRANPAM) 3.5 mm SoKET
(2 67 (umomaws e mshek)
c2-4P
Poxe 64512, [$FeP]
_ &1 ON
- 68% 13 OFF
fun _
SUPERBOARD - fos
3 " 3.5 mm SKT Connect @W'(nnupe'
4
t U oe Slet @, 81 on
suu, cws L'_,___[J / , 13 ofF
¢ 7 Brove]

Dealer notes

An assortment of notes on OSI dealers: who and where they are, what they sell, and
what (if any) special services or facilities they offer.

Those listed in detail below are the ones | have been able to contact before the
copy date for this issue — some seem impossible to contact by phone, at any rate.
They are not given in any particular order — the order is that in which they occurin
my rather erratic notes.

Intelligent Artefacts, Cambridge Road, Orwell, nr Royston, Herts.
Arrington (022 020) 689.

Hardware: C1/Superboard series in stock; full OSI small systems range to order.
Software: mainly disc software for OS 65D.

Specialities: debugging OSI disc systems! Associated company isa MAPCON con-
sultant specialising in process control.

Watford Electronics, 33/35 Cardiff Road, Watford, Herts.
Watford (0923) 40588/9.

Hardware: Superboards only at present: 7 days delivery quoted.
Software: standard OSI and Aardvark software, for Superboards only.

Videotime Products, 56 Queens Road, Basingstoke, Hants.
Basingstoke (0256) 56417 & 26602.

As for Watford Electronics.

Calderbrook Technical Services (CTS), 1 Higher Calderbrook, Littleborough,
Lancs OL15 9NL. Littleborough (0706) 79332 (any time).

Hardware: Superboard/C1 and C2-4 from stock; full range to order. OSl expansion
boards; own C1-to-OSl-bus interface board; other own boards under develop-
ment,

Software: standard OSI and Aardvark software. Own extended monitor for Super-
board/C1 (supplied with Superboards from CTS) includes screen clear, screen
editing facilities. Some own software under development.

Specialities: full technical back-up: ‘emphasis on service’.

Mutek, The Studio, Quarry Hill, Box, Wilts.
Box (0225) 743289.

Hardware: all C1, C2, C3 ranges normally from stock (Superboard not stocked).
Memory boards and some others from stock; all OSI expansion boards/systems
(including hard discs) to order — ask for delivery dates. RS-232 interface, 600 baud
conversion for C2 series cassette interface; colour mods and joysticks for C2 Mod 3
series available shortly.

Software: Aardvark tapes for C1and C2 series; new British games tapes and utilities
available and under development (publishes new software on a royalty basis).

Specialities: full technical and programming back-up, particularly for non-standard
applications.

Newbear, 40 Bartholomew Street, Newbury, Berks.
Newbury (0635) 30505.

Hardware: Superboard from stock; C1 series from stock early in '80; C2 and C3
series available from stock later in ’80.
Software: standard OSI and Aardvark tapes.

Other dealers we know of are:

Microcomputer Business Machines, 4 Morgan Street, London E3 5AB. 01-981 3993.
Mainly aimed at business market.

Lotus Sound, 4 Morgan Street, London E3 5AB. 01-981 3993.
Superboards and related hardware/software only.

Cavern Electronics, 94 Stratford Road, Woolverton, Milton Keynes MK12 5LU.
C1 series only at present.

N.L.C. Models, 27 Sidney Road, London N22 4LT. 01-889 9736.
Superboard and UK101 advertised.

U-Microcomputers, Station Road, Weaverham, nr Northwich, Cheshire.

0606 853390.

Full OSI small systems range, with software from a variety of sources (catalogues
available).

JEM Computing, 222 Pensby Road, Heswall, Merseyside.
Software only: games tapes for Superboard/C1 series.

No doubt | have missed out some dealers from this list — let us know who you are!
And let us know in detail what you’re selling and doing, so we can include the
details in this section: your stock and specialities are what we want to know about.

Group Notes

Organisation and gueries

At present the Group does not have much of an organisation — and in many ways
it would not be right if it did. We have rough areas of specialism, but that is all.
Richard Elen and George Chkiantz will be handling subscriptions and membership
enquiries; Richard and George and, in the North, Graeme Davies, will handle
technical queries and the like, as ‘a forum for the exchange of practical ideas’
etcetera; while | (Tom Graves, in case you weren’t sure) seem to be landed with the
Newsletter’s editing, setting and production. You’ll find our various addresses
after the intro to this issue.

Independence and all that

We intend that the Group should be fully independent of OSI or any of its dealers.
So in case you might have got the wrong idea, this is not meant to be aMutek news-
letter! | am aware of the number of times that their name has turned up in this
issue, but in some ways that has been inevitable. Mutek’s Dave Graham in particular

f
1

T o -— S SEmme

gave us an enormous amount of time and help, contacting the right people to start
the Group, and then supplying us with the essential material to get started. They
also arranged the deal we've made for serialising Aardvark’s BASIC Notes — almost
the only material available on OSI’s version of Microsoft’s BASIC. (1 happen to have
a soft spot for Mutek for another reason — they risked their survival in order to
break the absurd former price structure on OSI kit. The results can be seenin every
current ad for OSI kit — realistic prices help everybody, dealers included.)

We feel that it’s right to give a mention to people who help us, whether dealers
or otherwise. And when any dealer — Mutek included — makes a blunder, they
will also get a mention of a rather different kind in this Newsletter. ..

Quite simply, the Group would not be of much use unless it is independent, and
that is how we intend it to be.

Subscriptions and prices

For this year at least, the annual subscription to the Group is £5.00, which includes
four issues of this Newsletter and, we hope, quite a bit more. We cannot really
make the Newsletter more frequent than quarterly without going at least partly
professional, something we cannot afford as yet in several senses. Increased fre-
quency means far more work, far more copy (or smaller content per issue) and far
greater postal bills. To fill the gaps between the issues, you should soon be seeing
a regular column of ‘Professor Challenger’s Notebook’ in Practical Computing,
compiled by Richard Elen from whatever you care to send in.

Five pounds is the same as the price of four issues of the Newsletter on its own.
So you could buy it from a dealer if you prefer. But we’d rather you subscribed and
became a member, for a number of reasons.

First, you'll get your issues more reliably, direct by post. We have to base our
print run for the Newsletter on the number of member/subscribers we have, with
only a small number left over for reserve and for sale through dealers. To put it
simply, if you don’t subscribe, there may not be a copy at your local dealers when
you wander round there to get it — they’ll all have been sold.

Second, we can use your money to give you more for your money. If you buy a
copy from a dealer, he will keep the standard mark-up (about a third of the price):
effectively, we lose rather more than that, because we have to post a batch off to
the dealer, and spend time on admin chasing the dealers for our money too!

There is a definite break-even point, as far as the number of subscribers is con- -

cerned, at which the Group can make a profit. At the moment, that would be
around the two hundred mark. Since we’re not in it for the money, that profit can
used for other things, a little extra money to give members a little more for their
money. Exactly what that extra would be is up to you. Decent documentation
would be one place to start — free to members, but for sale to others. Your sugges-
tions, please!

We can arrange other things for members as a group, too — we’ve already
started on some things, as described below. But to do this, we need to know the
size of our membership, and to have a reasonable-sized membership, so as to
guage quantities when negitiating deals for hardware, software and the like.

And finally on costs, our other big expense will be postage. So please, when
writing to us, don’t forget to enclose stamps or, preferably, a stamped addressed

envelope for reply. If you forget, you'll be eating into that ‘spare cash for extras’, *

which is supposed to be for everyone.

(

<

Negotiations
Various things are already under way. As | mentioned earlier, you should soon be
seeing a regular column of ‘Professor Challenger’s Notebook’ along with ‘Pet
Corner’ and ‘Apple Pie’ in Practical Computing. We're also working out the form
of a standard contract for software publishing, based on book-publishing contracts,
to give amateur software authors some degree of protection. Our current negoti-
ations are, again, with Mutek, but we hope the form will be adopted by other
dealers as well. In any case, it should give the software writers among our members
a very good royalty deal (three or four times better than book publishing, because
of smaller origination costs for the publisher) and a good market for their work.
What we haven’t yet started on is hardware negotiations, either for marketing ci
members’ modifications or board designs, or for bulk buying of hardware such as
the 527 memory board. Suggestions, please?

Aardvark’s BASIC Notes

For those of you in a hurry, the complete set of Aardvark’s notes on BASIC should
be available from most of their stockists — we know that CTS and Mutek at least
have them in stock, but try your local dealer. No-one seems sure of the right price
for them! Aardvark’s own price for its September version was $9.95, to give you —
and the dealers — some idea. Aardvark are currently updating and improving
them, though, which may lead to an increase in price. The full set includes full
descriptions of BASIC’s method of storing programs, variables and arrays, the main
program execution loop, locations and rough descriptions of most of the sub-
routines in BASIC, and many important ideas and comments on matters like
recovery from accidental cold-start. Essential for OSI users, particularly those doing
mixed BASIC/machine-code programming.

Writing for the Newsletter
This is your Newsletter.It is no doubt obvious that rather too much of this issue has
trickled from my pen; but that’s not surprising in a first issue of a new magazine,
and | don’t want to do it again!

So tell us what you are doing. Tell us in writing; tell us in pictures, drawn or
photographic; tell us in programs, as listings or on tape.
/ If you're writing, please type, at least doubled-spaced lines, and preferably on A4
paper to simplify our filing later. We can decipher most manuscript, but in this field
one error means the difference between something that runs and something that
demands a few hours of bug-hunting. And people involved in computing have an
infuriating habit of hand-writing everything in capitals. . . think of the poor type-
setter who has to decode it! As for writing style, perhaps the best guide I've seen is
in Micro 16 (September '79), which should still be available from most computer
stores. As Editor, | reserve the right to prune excessive jargon — beware!

llustrations make all the difference between a grey splodge of text and an
interesting page. We've been a little short this issue, and the drawings we have
included have not been too clear, but we rather ran out of time for re-drawing to a
more presentable standard. Illustrations cost no extrato printin the process we use,
but they do need to be good — a bad picture is worth a thousand garbled words,
which we can well do without. We don’t really want to publish endless photos of
OSI kit, but interesting applications are worth showing if the photograph is clear

and with an uncluttered background. Sometimes it’s more interesting to draw from

a photo, as we’ll be doing with the front cover of the nextissue. In short, we’d really ‘
like to use a lot of illustrative material, since it costs little extra; but it must be
interesting to be worth putting in!

Programs, particularly for applications or as usable sub-routines, are going to be
a major part of the Newsletter. As Micro put it, a hand-written program is one that
probably hasn’t been tested on a machine: we tend to be a little doubtful of them.
We haven’t much spare time to load and test programs from written listings: printer
listings would be better, but best of all would be listings on tape in one of the
standard OSI formats (300 baud, BASIC, machine code or assembler). At the
moment the VDU for my Challenger is beside my typesetter, so | canset direct from
screen to screen; but veryshortly we should be able to set direct from program
tapes. We'd like to be able to take word-processor outputs, but technical problems
— not to mention union problems — limit that at the moment, though we should
have that side going within the next few months.

One problem is copyright. Unlike Micro, we are not a commercial organisation:
we’re not interested in sole commercial rights. The copyright on any material
would remain yours. But we would like to retain the right to republish content
from the Newsletter in book-form at a later date — we thus state that under that
description the copyright of material published in this Newsletter wili be held
jointly by both parties, ourselves and you. If you object to a joint copyright of this
kind, please say so and we will publish-it with a copyright notice in your name only.
We want to know what you’re doing, but we don’t want to cause any commercial
problems for anyone.

In any case, get in touch with us — we’d all like to know what’s being done with
OSI kit.

Next issue

Copy for the next issue should be sent to me by the end of the second week in
February '80. That allows us enough time to prepare the issue for publication in
mid-March.

The next part of our serialisation of Aardvark’s notes will be on BASIC's storag i
formats for programs, variables and arrays. We'll also have a memory map in as
detailed a form as we can make it, for both C1s and C2s.

Our main theme for the next issue will be graphics and screen handling, as a start
towards filling at least one of the holes in OSI’s documentation. We'll be fooking at
graphics applications of Challengers. In BASIC we’ll ‘have ‘print-at’ and non-
scrolling input and print routines, among others. For USR and machine-code buffs
we’ll explore alternative uses for some of the screen-handling routines in the ROM
BASIC: BFDE, for example, can be used to control a non-destructive (but non-
transparent) cursor, or as a true rubout.

And there’ll be plenty of notes, ideas and programs. See you again in mid-

March! ‘
'

/s

Copyright 1979 OSI UK User Greup, unless otherwise stated.

